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COMPARISON OF DIRECT EULERIAN GODUNOV AND
LAGRANGE PLUS REMAP ARTIFICIAL VISCOSITY SCHEMES

Richard B. Pember* and Robert W. Andersont
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract

We compare two algorithms for solving the equa-
tions of unsteady inviscid compressible flow in an
Eulerian frame: a staggered grid, Lagrange plus
remap artificial viscosity scheme and a cell-centered,
direct Eulerian higher-order Godunov scheme. We
use the two methods to compute solutions to a num-
ber of one- and two-dimensional problems. Our re-
sults show the accuracy of the two schemes to be gen-
erally equivalent. In a 1984 survey paper by Wood-
ward and Colella, the Lagrange plus remap approach
did not compare favorably with the higher-order Go-
dunov methodology. We examine, therefore, how
certain features of the staggered grid scheme consid-
ered here contribute to its improved accuracy. The
critical features are shown to be the use of a mono-
tonic artificial viscosity in the Lagrange step and, in
the remap step, the use of a corner transport up-
wind scheme with van Leer limiters in conjunction
with separate advection of internal and kinetic en-
ergies.

Introduction

Shock capturing methods have always played a
central role in the computational modeling of com-
pressible flows. Consequently there has always been
interest in comparing the various methods. Seven-
teen years ago there appeared one such comparison
by Woodward and Colella.! The methods exam-
ined therein include a direct Eulerian version of
the piecewise-parabolic method (PPM) and two dif-
ferent artificial viscosity schemes: MacCormack’s
scheme, a cell-centered method based on the Lax-
Wendroff scheme, and BBC, a staggered grid, La-
grange plus remap scheme with a von Neumann-
Richtmyer artificial viscosity. The article includes
a ranking of the accuracy of the schemes in which
PPM is ranked first, BBC fourth, and MacCor-
mack’s scheme fifth. Although it was not the intent
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of the authors, the reader is left with an impression
of the superiority of higher-order upwind methods
and the inferiority of artificial viscosity schemes.
(We note that the representative linear hybridiza-
tion code, ETBFCT, was ranked third. The present
paper discusses neither the linear hybridization ap-
proach nor flux-corrected transport (FCT) schemes.)

In the intervening years, direct Eulerian methods
using an artificial viscosity have certainly demon-
strated comparable accuracy with higher-order up-
wind schemes. This success has been accomplished
in part by the use of linear hybridization to formu-
late the artificial viscosity terms.? The approach
represented by BBC, however, is generally no longer
considered viable for Eulerian calculations. In par-
ticular, one finds interpretations of the conclusions
of Woodward and Colella that the Lagrange plus
remap, artificial viscosity approach is inherently less
accurate than the direct Eulerian higher-order Go-
dunov methodology.®*

The staggered grid, artificial viscosity Lagrange
plus remap approach does remain important, how-
ever, in the context of arbitrary Lagrangian-Eulerian
(ALE) methods.>= An operator split ALE method
for compressible flow typically consists of three
steps: a Lagrange step, in which the equations of
gas dynamics are solved on a grid that moves with
the fluid velocity; a grid motion step in which the La-
grangian grid is modified, if necessary, to reduce grid
distortion; and a remap step in which the solution
at the end of the Lagrangian step is conservatively
interpolated onto the modified grid via an advection
scheme.

Motivated by its importance in the context of
split ALE schemes, in this paper we reexamine the
comparison of the staggered grid, artificial viscosity
Lagrange plus remap approach with the direct Eu-
lerian, higher-order Godunov methodology. We first
formulate and discuss the staggered grid Lagrange
plus remap scheme used in our comparison. The
Lagrange step follows a standard approach, namely,
the scheme due to Tipton'® which is itself based on
HEMP.'1>12 The remap step uses a variation of the
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corner transport upwind method of Colella'® as for-
mulated for moving quadrilateral grids.!* (To our
knowledge, only Jun'® has applied this scheme in a
remap step as well.) The remap step includes an ap-
proach standard to staggered grid ALE schemes,'®
namely, a total energy advection scheme in which
kinetic and internal energy are advected separately
to determine the remapped total energy. This ap-
proach, while still total energy conserving, over-
comes the difficulties reported by Woodward and
Colella! in the solution of the interacting blast wave
problem; specifically we are able to use van Leer lim-
iters while avoiding early time overshoots in density.

The second method in our comparison is the
higher-order Godunov scheme due to Colella.*17-18
After briefly reviewing this scheme, we use both
methods to compute solutions to a number of one-
and two-dimensional problems. (We will refer to the
two methods as the Lagrange plus remap scheme and
the higher-order Godunov scheme.) The test prob-
lems include two of the those examined by Wood-
ward and Colella,! the interacting blast wave and
the double Mach reflection of a strong shock, as well
as a shock refraction and the LeBlanc shock tube.
Our results demonstrate that the accuracy of the
two schemes is generally equivalent, each scheme
displaying both relative strengths and weaknesses.
The results show in particular that the improved ac-
curacy of the present Lagrange plus remap scheme
relative to BBC is due to several key features of
the scheme: a monotonic artificial viscosity in the
Lagrange step and the use of the corner transport
upwind scheme in the remap step with van Leer
limiters in conjunction with separate advection of
internal and kinetic energies.

Governing equations
The equations of single fluid gas dynamics can be
expressed in either of two equivalent formulations,
the conservative and the material derivative forms.
In two dimensional rectangular coordinates, the con-
servative formulation is

6_U . OF(U)
ot ox

L 9GO

oy =0

(1)

where

U = (p, pu, pv, pE)
FU)= (pu, pu? + p, puv, puE +pu)T,

G(U) = (pv, puv, po? + p, pE + pv) ",

and E = 1/ (u? + v?) +e, while the material deriva-
tive formulation is

Dp
Dt

T
3

—pV-U (2)

2

DU

pD—t = —-Vp (3)
De p D /1
- - _EFyg.yp=_=1Z= 4
Dt o U= D (p) @

where U = (u,v)T. For all examples considered in
this paper, p is given by the polytropic equation of
state p = p(p,€) = (v — 1) pe.

Lagrange Plus Remap Scheme

The Lagrange plus remap scheme is an operator
split scheme consisting of two steps: a Lagrange
step, in which the equations of gas dynamics are
advanced to the new time on a grid that moves with
the fluid; and the remap step, in which the solution
is conservatively interpolated onto the original grid
via an advection over a pseudo-timestep.

We solve the equations on a structured grid of
quadrilateral cells. The flow variables are staggered:
p and e are cell-centered quantities while U = (u,v)
is node-centered. The grid itself is defined by the
positions X = (z,y) of the nodes. We use the fol-
lowing indexing convention. The cells themselves are
indexed as ij, the four nodes as i £ 1, j + 1/, and
the four bounding faces as i + 1/, j and 4,5 + 1.

The Lagrange step uses a predictor-corrector for-
mulation in which the flow variables are not stag-
gered in time and which otherwise follows the scheme
due to Tipton.'® The scheme uses a multidimen-
sional form!?2 of the scalar monotonic artificial vis-
cosity due to Christensen.'® The artificial viscosity
q is a cell-centered quantity that acts in the same
manner as pressure. In one space dimension, this
viscosity is given by

pi |Aui| (cq [Aui| (1 - ¢?) +
crci (1 —9)) Au; <0
0 otherwise
()
where Au; = w1y, — u;_y, c is the sound speed,
and

q; =

¢i = max(O,min (1,2Ri+1,2Rz’_1,

5 (Rit1 + Ri-1)))

where Ri:l:l = Auiil/Aui. When ¢ = O, the vis-
cosity reduces to what is often called the standard
Lagrange viscosity.?? c¢g and ¢ are constants that
are generally set to .25 (v + 1) and .5 for polytropic
gases.® The effect of the limiters 1 — ¢ and 1 — ¢?
is to reduce the viscosity in regions with moderate
velocity gradients and thereby reduce the numerical
diffusion of the scheme.
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The Lagrange step uses the HEMP'%12 gpatial
discretization of the momentum equation. Figure 1
shows four computational cells — A, B,C, D — and
the nine nodes associated with them. The mass of
node 0 is defined by

mo = (paVa + pBVB + pcVeo + ppVp) /2

where V is the cell volume. By the divergence the-
orem,

| V(p+qdV =
1357

___(p+a)nds,
8(1357)
where n is the outward facing normal, and dV and
ds the standard area and length measures. (The
notation pipa...p, is used to denote the n-gon with
vertices p1, P2, ..., Pn.) The semi-discrete form of the
velocity update is then

DY _ ! / p+g)nd
— =a=— p + q) nds;
Dt mo J5(1357)

the integral is approximated using a constant pres-
sure in each cell. Note that this discretization is
conservative: since f nds = 0 over a closed curve,
for constant pressure elements

/ (p+q)nds:1/2/
B(abcdefgh)

d(1357)
(Note that an hourglass filter'? is not used in the
current scheme because the Lagrangian solution is
always remapped to the original grid.)
3

(6)

(p + q) nds.

4
B A |2
b a
5 d §) h 1
{ g
C D
6 8

-
Fig. 1 Momentum control volume.

A predictor-corrector scheme is used to solve equa-
tions (2), (4), and (6). In the predictor, we compute
predicted values of p,U,e, X, and V at time n + 1.
In the corrector, we average the predicted time n+1
values with the time n values to form time-centered
source terms. The predictor-corrector has the fol-
lowing steps:

1. Compute a™ using time n values and equation
(6).

2. Compute the predicted velocity:

urt) ur

—_ n
i+ Yot = Vit g+t T Ata

i+Yo,5+ Yo

3

3. Compute the predicted node positions:

n+1 —

n
i+, 4+ Yo XH%JPﬁ+

n n+1
5AL (Ui+1/2,j+1/2 + Ui+1/2,j+1/2) .

4. Compute the predicted zone volumes
5. Compute the predicted densities:

n+1
vy,

n—+1

_ +1
Pij —PZVZ?/V; .

6. Compute the predicted internal energy
(Pf +afy) (1/03 —1/0Fy) -

7. Compute a"t! predicted time n + 1 values and
equation (6).

8. Repeat steps 2-6 using time centered values of
a, p, and q.

Note that in step 3 we use a time-centered velocity
even in the predictor step. This ensures that the
restriction of the scheme to one dimension conserves
total energy.?!

The Lagrange step has a time step restriction of
At} ,, = oming;li;/cfy, where l;; is a measure of
the shortest distance across cell ¢j and the Courant-
Friedrichs-Lewy (CFL) number o is a positive con-
stant, o < 1.

In the remap step we use an advection scheme
to conservatively interpolate the solution obtained
above from the grid defined by X™*! onto the origi-
nal grid defined by X™. This interpolation is formu-
lated as an initial value problem in which

n+l _ _n

€ =€ —

Oow/or =0 (M
is solved on a moving grid. w and 7 denote an ar-
bitrary scalar quantity defined on the grid and a
pseudo-time, respectively. At 7 = 0, w is defined
by its value at the end of the Lagrange step. We
integrate (7) from 7 = 0 to 7 = 7¢. Over this time,
the grid moves from z%¢ = X"t! to gnev = X",
(The superscripts “old” and “new” denote pre- and
post-remap values, respectively.) The grid velocity
is defined by s = (z"** — z°!¢) /7;. We now trans-
form (7) to index space coordinates (£,7) = (4,7)
and thereby obtain the equation

oJw 8, o .
where

J= TelYn — Yely, nt = (ym _'Z'n) ’ n' = (_yﬁaxﬁ) .

We now solve (8) with a conservative difference
scheme.
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In order to ensure freestream preservation the
fluxes used in the conservative difference scheme
must be formulated as products of edge values and
either transport volumes (in the case of density) or
transport masses (in the case of all other quanti-
ties).?? The transport volume associated with an
edge is the signed quadrilateral formed by the old
and new edges, and the segments connecting the old
and new node positions. In Figure 2, the arrows
point from the old grid to the new grid. A, B, G,
and H represent positive transport volumes while C,
D, E, and F represent negative ones. More precisely,
the transport volumes do are defined at £-edges by
new
i Yo, j—Yo

0ty = ( 1/2 J+Ye

new
yi+1/27j+1/2) o

new

it Yy, i+

(7§

( H‘l/z,]—l/z
( H—l/z j=Y )
( Vit )

y’l+1/2,3+1/2

Volume
—(50'1'4_1/27]' and

with a similar expression for the 7n-edges.
fluxes are then defined by Fj vy, ; =

Fi,j-i-l/z = —50i1j+1/2, i.e.,

Vi = Vg (Fimvy = Fipp ) + (Fijo, = Fi jys)-
Transport masses for cell-centered quantities can be
defined by the product of the density and the trans-

port volume at an edge:

My = Pig,j00it1h, 9)
Mijt+y, = pi,j+1/260-i,j+1/2'
Mass fluxes are defined by Fj 1, ; = —dm; .y, ; and

Fi,j+1/2 = —(sz',j+1/2, i.e.,

mif = mgH(F vy, j=Fipy, )+ (Fi joy,—F i),

where m;; = p;;V;; is the mass of cell 4.

ST
2 3 edgei j+1/2

edgei-12j

edgei+l/2,j

edgei,j-1/2
Fig. 2 Transport volumes.

The control volume for momentum remap is con-
sidered a logical rectangle; for node 0 in Figure

1, the control volume is aceg. The four bound-
ing faces of the control volume associated with the
node at (i + 1, j + 14) are indexed as (i,5 + 1),
(i +1,j+1o),(i + Yo, j), and (i+1f,j+1). The
transport masses for the &- faces are given by

5m7.wdal‘ —

1 . o
i+Ya,j /4 (5mw+1/2 + 5ml+1,1+1/2

+ 5mi,j_1/2 + 5m,-+1,j_1/2) (10)

with a similar expression for the n-faces. The trans-
port mass must be defined in this manner to ensure
freestream preservation of velocity given the HEMP
discretization of the momentum equation.

The remap algorithm can now be summarized as
follows:

1. Compute transport volumes at all edges.

2. Compute densities at all edges.

3. Compute transport masses using (9) and (10).

4. Remap density by

V.r;ewp:zjew = ViOldprld (Fi—l/mj_Fi-i-l/z,j)
+(Fij-yo = Fijjr)
where
Fi+1/2,j _pi+1/2,j60i+1/2,j
Fijiv, = —Pijr00i 541,

5. Remap w = u,v by

new new _ old old
M3, i+ Wit ot Yo = Mit Yo, Wit Yo i+ T

(Fijrve = Fiy1,j4v) + Figvng — Fiyvp i)
where
nodal
Fi vy, —w; j1,0m A
_— noaa
Fi-‘rl/zyj = TWitth,j 6mz+1/2,1

6. Remap w = ke, e by

m%eww?jew — moldwold + (Fi—l/g,j _-Fz'—i-l/g,j) +
(Fz,]f Yo — Fvi,j+1/2)
where
Fivy,j = —wiyy, j0my, ;
Fijry, = —w;jqy,0m; ;i y,, and
ket = Y Y th(u +0?)M

nodes of ij

7. Enforce conservation of total energy by

Yy Z

?]
1/2(u2 + U2)new. (11)
nodes of ij
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The remap algorithm described above is indepen-
dent of the specific manner in which edge values
are computed. We use the corner transport upwind
scheme due to Colella'?® as formulated for moving
quadrilateral grids by Bell et al.'* for the com-
putation of edge values. The algorithm applies to
both cell-centered and node-centered control vol-
umes. The algorithm has two basic steps. First, left
and right (top and bottom) states are determined
at each & (n-) edge by a first-order Taylor expan-
sions in space and time. A unique edge value is then
determined by upwinding with either —do (density)
or —dm (other quantities): if —do or —dm is pos-
itive, the left or bottom state is chosen; otherwise,
the right or top state is chosen.

To perform the Taylor expansion we first compute
compute van Leer limited?® central differences Agw,
Apw in & and 7- directions. In the & direction,
these are computed by

A¢w;; = min (|Acw| ,2 |ALw| ,2 |ARw|)
xsgn (A%w) if ALwARw >0
= 0, otherwise,
where Afw = w; — w;_1, Afw = w;y; — w;, and
ACw = 1 (wiy1 —w;_1). The states on the left
sides of &- edges are defined by

_ +A§ +AT "
=|lw 211)5 th ij.

n+Y

Wity 5,L

Similar expressions can be obtained for the right
sides of &- edges and the top and bottom sides of
n- edges. Using (8) we can express w; in terms of
spatial derivatives and obtain

= (s (A6 ARE-s
-\ 27 )t

n
ij

We evaluate we as Agw/A¢ and wy, as (w

n+Y
wi""l/z,ij

Atn" - s
2J

P

L+l
wf’ j_1/2) /An. In the latter expression wz iy, 1S de-
termined by performing one-dimensional Taylor ex-
pansions in the n direction, i.e.,

A" - s "
27 )

ij

o (A0 _ATnT-s\ T
L+ T 2 2J K ’

i+1,j

A
Wi B = (w + (7 +

and upwinding the resultant top and bottom edge
states.

5

Although there is no time step associated with
the remap step, there is a time step restriction of
At?emap U’?:I:1/2,j:|:1/2 , O S 1,
which is equivalent to the restriction that each cell
at the end of the Lagrange step have some inter-
section with itself in the original grid. The time
step used by the full Lagrange plus remap scheme is
At™ = min (At7,,, Aty

Temap) °

= Uminw- l”/max

Higher-order Godunov Scheme

The higher-order Godunov method is a spatially
split version of the scheme due to Colella.* 1718 We
use a uniform computational grid with cell widths
Az, Ay indexed by i,j. The bounding faces of cell
i,j are indexed as i + 1h,j and 4,5 £+ 1. The flow
variables p,u,v, and E are all cell-centered. In the
z-sweep (the y-sweep is similar), we solve

B_U OF(U)
ot or

=0. (12)
In formulating the z-sweep, the following quasilin-

ear, non-conservative form of (12) is used:

9
ot

dq

+ A(q)a—w =0 (13)

where q= (qla "'7(]5)T = (piuavapa pe)Ta

1/p

O

Ag) =

M

oo OO
S
(oY

oo oo
oS O~ O
S OO oo

)
>

and h = e + p/p is the specific enthalpy. The prim-
itive variables are thermodynamically redundant so
that only one equation of state evaluation per sweep
is required.

The algorithm to integrate (12) has three basic
steps. For simplicity, we suppress the index j and
let U™ denote the value of U at the end of the
z-sweep:

1. Compute time-centered left and right states,
qf_:rl/lf , and qf;/lﬁ > at each z-cell face.

2. Solve the Riemann problem at each cell face
with the left and right states computed in (2) and
evaluate that solution along the ray z/t = 0 to ob-
n+Ys
i+

3. Compute U/**! by conservative differencing.

The first step basically follows the algorithm de-
scribed by Miller and Puckett? applied to the quasi-
linear system (13). Fourth-order spatial slopes®*
and a slope flattening technique?® are used here.

tain q
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The second step uses a linearized approximate Rie-
mann solver with a special treatment for rarefac-
tions?® to solve the Riemann problems defined in
step 1. The last step uses the Riemann problem
solutions to define numerical fluxes and update U
conservatively. In regions of convergent flow, an
explicit diffusive flux?® is added to the numerical
flux in order that a small amount of additional
numerical dissipation be present in the vicinity of
shocks. The z-sweep has a time step restriction of
At"™ = omin; ; Az/ (|ufj| +c), o<1

Numerical results

For all problems, we use a uniform grid of square
cells. The CFL number is .9 unless noted otherwise.

Interacting blast wave.

The flow domain for this one-dimensional prob-
lem!>19 has length one with reflecting walls at both
end. The gas is polytropic with v = 1.4. At ¢t =0
the gas is at rest with density 1. The initial pressure
is 1000 in the leftmost tenth of the domain, 100 in
the rightmost tenth, and .01 elsewhere. Initially, two
shock waves and two contact discontinuities develop
at the initial discontinuities and propagate towards
one another, while two rarefactions develop, propa-
gate towards the walls, and reflect off them. As time
progresses, these six initial waves interact and create
additional contact discontinuities.

Figure 3 displays the density computed by the
higher-order Godunov and the Lagrange plus remap
schemes at ¢ = .038 on a 1200 zone domain. To
obtain a baseline solution, we also compute the
flow both with a Lagrangian higher-order Godunov
method?” and with the staggered grid Lagrange
scheme on 3600 zone domains. The initial zoning for
both Lagrangian computations is spatially uniform.
The densities at ¢ = .038 for all four computations
are displayed in Figure 3. The two Lagrangian so-
lutions are virtually indistinguishable and therefore
serve as a baseline solution. We note that these so-
lutions themselves have a flaw, a spurious overshoot
at z =~ .765. The magnitude of the overshoot is the
only discernible difference between the two sets of
Lagrangian results. This overshoot has been previ-
ously observed.!®

From Figure 3 we see that the higher-order Go-
dunov scheme better matches the density peak at
x = .75, while the Lagrange plus remap scheme
shows a small overshoot here. On the other hand
the latter shows sharper resolution of the contact
discontinuities at z ~ .6 and z = .75. The den-
sity between z =~ .65 and xz = .75 also seems to
be better represented by the Lagrange plus remap

6

scheme. We note that the PPM results of Woodward
and Colella' show better resolution of the contact
discontinuities than our Godunov results. The im-
plementation of PPM used for those results includes
a contact detection and steepening scheme. If that
scheme had been disabled, those PPM results would
have been essentially the same as the Godunov re-
sults shown here.?2® Contact detection and steep-
ening are not implemented in the present Godunov
scheme because parabolic interpolation appears to
be essential to its success; moreover, steepening ap-
pears to introduce spurious numerical artifacts in
multidimensional calculations.?®

—— Lagrange plus remap

—— higher-order Godunov

[ Lagrange only, 3600 zones
—— higher-order Godunov Lagrange, 3600 zones

0 Il Il Il

0.55 0.65 0.75 0.85

Fig. 3 Interacting blast wave problem at t =
.038. Closeup of wave interaction region.

We next examine the effect of advecting E di-
rectly as opposed to advecting e and ke separately.
(The former is the strategy used in BBC.!) Note that
when FE is advected directly, the remapped value of e
is defined as the difference between E and the kinetic
energy found from the remapped velocity. In the up-
per plot of Figure 4 we see the results at ¢t = .038
for three Lagrange plus remap calculations. The
first density profile shows the same results displayed
in Figure 3. The second profile plots the density
when FE is advected directly. This profile contains
a number of noticeable deficiencies. Woodward and
Colella! observed that these deficiencies were due
to the computation of unphysically high densities at
early time. They corrected the problem by using
a minmod limiter in the advection step. The third
profile show our results for this strategy. Note that
these results are similar to those found with BBC by
Woodward and Colella.!

In the lower half of Figure 4, we examine the
early time behavior of the two energy remap ap-
proaches employing van Leer limiters. We indeed
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interacting blast wave: rho att = 0.03800
1200 zones total on [0,1]

T T
8 - —— Lagrange plus remap, advect e and ke E
—— Lagrange plus remap, advect E

Lagrange plus remap, advect E, minmod limiter
higher-order Godunov

—
1

—— Lag+remap, cfl=.9, e and ke advected

—— Lag+remap, cfl=.9, E advected
Lag+remap, cfl=.25, E advected

—— Lag+remap, cfl=.25, e and ke advected

higher-order Godunov

s 016

Fig. 4 Effect of energy advection strategies
on solution of the interacting blast wave prob-
lem. Godunov results are shown for compar-
ison.

see that when E is advected directly, the density
at early time is much higher than when e and ke
are remapped separately. Moreover, we see that
the problem actually worsens as the CFL number
is lowered. We conjecture that when e and ke are
remapped separately, the early time overshoots are
reduced because the effective total energy slopes are
limited to a greater amount.

Double Mach reflection of a strong shock.

For this problem! the flow domain has length 3.5
and width 1.0. At ¢ = 0 a Mach 10 planar shock in
a v = 1.4 polytropic gas impinges at an angle of 60°
on the lower face of the domain at a distance of .3
from the left end of the domain. The preshock den-
sity and pressure are 1.4 and 1, respectively. The
lower face of the domain is treated as a reflecting
wall to the right of the impingement point; to the

7

left, it is treated as an outflow boundary. At the top
face inflow boundary conditions are imposed which
match the exact evolution of the shock as it tra-
verses the boundary. The other boundary conditions
are inflow at the left and outflow at the right. The
flow is self-similar and characterized as follows. The
first reflected shock, the incident shock, and the first
Mach stem meet at a triple point. The first contact
discontinuity extends from this triple point down to
the reflecting wall, at which point it is deflected into
a wall jet that flows back towards the Mach stem.
The contact discontinuity and wall jet exhibit small
rollups induced by a Kelvin-Helmholtz instability.
The wall jet also displays a larger rollup induced by
the presence of the Mach stem. A curved reflected
shock is connected to the first reflected shock. A
second weaker Mach stem extends from this point
to the first contact discontinuity. There is also a
second slipline attached to this point which is too
weak to appear in our computational results.

We compute the flow on a 1120x320 grid with the
two methods. The density at ¢ = .21 is displayed
in Figure 5. The higher-order Godunov scheme is
somewhat better at both suppressing oscillations in
the postshock region of the left end of the curved re-
flected shock and not suppressing the small rollups
in the wall jet. The results also show a smaller rollup
of the wall jet just before the Mach stem. The La-
grange plus remap scheme, on the other, is better at
suppressing oscillations in the middle and right sec-
tions of the postshock region of the curved reflected
shock. Both schemes exhibit a spurious wave ema-
nating where the Mach 10 shock intersects the top
boundary. This wave, also observed by Woodward
and Colella! is due to the mismatch between the ex-
act and the numerical representations of the shock
outside and inside, respectively, the top boundary.
The spurious wave has a slightly more deleterious ef-
fect on the Lagrange plus remap solution. The spuri-
ous contour in the higher-order Godunov results just
outside the curved reflected shock at x ~ 1.5, y =~ .5
delimits a small perturbation that is also present in
the Lagrange plus remap results but which does not
appear in the plot with our choice of contour levels.

We next examine the effect of using a spatially
operator split advection scheme that alternates &n
and n€ sweep patterns, each sweep taking a full
pseudo-timestep, but which otherwise uses the ad-
vection algorithm described above. The density at
t = .21 computed is displayed in Figure 6. We see
that the Kelvin-Helmholtz instability along the wall
jet is somewhat suppressed. The results otherwise
do not differ significantly from those in Figure 5.

We finally examine the effect of using the standard
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Fig. 5 Double Mach reflection of a Mach 10 shock. Thirty density contours are used in each
plot. The density contours range from 1.4 to 22.51. Higher-order Godunov results are shown
above Lagrange plus remap results. The same contour scale is used in Figures 6 and 7.
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Fig. 6 Double Mach reflection computed by

operator split advection scheme.

Lagrange viscosity. The computed density at t = .21
is shown in Figure 7. Using the standard Lagrange
viscosity results in a poor representation of the Mach
stem extending down from the kink in the reflected
shock. This poor representation is also present in
the BBC results reported by Woodward and Colella!
where it is attributed to the linear viscosity term
in the standard Lagrange viscosity used by BBC.
Otherwise, the results are again otherwise essentially
the same as those in Figure 5.

Oblique shock wave refraction.

In this problem we model a shock (M = 1.89)
in a v = 1.4 polytropic gas impinging on a den-

8

Lagrange plus remap scheme

with spatially

sity interface at an angle of incidence of 58°. The
preshock conditions in cgs units are u = v = 0
and p = 1.01325 x 10%. The preshock densities
are 1.223 x 1072 upstream of the interface and
6.243 x 10~2 downstream. The flow domain is 1.12
cm wide by .72 cm high. The initial shock location is
.2 cm from the left boundary and the density inter-
face intersects the lower boundary .0975 cm further
to the right. Reflecting wall boundary conditions are
imposed at the upper and lower faces. The other
boundary conditions are inflow at the left and out-
flow at the right.

This problem is a simplification of one in which
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Lagrange viscosity.

a Mach 1.89 shock refracts at an air/SFg inter-
face,2%30 the simplification being the treatment of
both gases as polytropic with equal 4’s of 1.4. The
flow is characterized as follows. The incident shock,
a Mach stem, a curved reflecting shock, and a weak
contact discontinuity meet at a triple point. The
contact extends from the triple point to the deflected
density interface. Upstream of this intersection, the
deflected density interface is characterized by rollups
induced by a Kelvin-Helmholtz instability. A trans-
mitted shock propagates into the denser fluid. The
presence of the lower wall induces two additional
flow features: the density interface undergoes rollup
and the transmitted shock undergoes direct Mach
reflection.

We compute the flow on a 896x576 grid with the
two methods to ¢ = 1.16667 x 10~°. The density
at that time in a subregion of the flow domain con-
taining the direct Mach reflection at the lower wall
is displayed in Figure 8. The results mainly dif-
fer along the density interface and near the incident
shock triple point (which is outside the region dis-
played.) The Lagrange plus remap scheme computes
a more damped rollup pattern and a slower growth
rate of the shear layer than does the higher-order
Godunov method. The damping can be seen espe-
cially in the upper right corner of the lower plot in
Figure 8. The Lagrange plus remap algorithm com-
putes a Mach stem height at the incident shock triple
point of .028 cm and an angle between the reflected
shock and the Mach stem of 70°. The higher-order
Godunov algorithm computes corresponding values
of .019 cm and 60°. Both codes, however, compute
the same location of the incident shock Mach stem
and the same angle between the Mach stem and the
interface, namely, 78°.

LeBlanc shock tube.

In this shock tube problem?? the initial discon-
tinuity separates a region of very high energy and
density from one of low energy and density. The ini-
tial discontinuity is at x = 3. (p, e, u) = (1, .1, 0)

. 1.ou . K
Fig. 7 Double Mach reflection computed by Lagrange plus remap scheme using
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Fig. 8 Refraction of a Ma‘ch 1.89 shock. Re-
gion is a .4 cm square centered .6 cm from
the left edge of the flow domain. The density
in the entire flow domain ranges from .001223
to .026083. Higher-order Godunov results are
shown above Lagrange plus remap results.

for z < 3 and (.001, 10~7, 0) for > 3. The gas is
polytropic with v = 5/3. The solution consists of a
strong rarefaction moving to the left, and a contact
discontinuity and a shock moving to the right.

We compute the flow with both methods on grids
of 180 and 1440 zones. For comparison, we also
compute the flow both with a Lagrangian higher-
order Godunov method?” and with the staggered
grid Lagrange scheme on the same domain. We also
compute the exact solution using an exact Riemann
solver. The internal energies for all four methods
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and both grids as well the exact solution at t = 6
are shown in Figure 9. On the 180 zone grid, all
four methods have difficulty computing the posi-
tion of the shock. The two Lagrangian methods
best compute this position, while the two Eule-
rian scheme show roughly equal and opposite errors.
Both Lagrangian methods, however, compute large
overshoots in the postshock value. The higher-order
Godunov method is best at computing the contact
discontinuity, while the Lagrange plus remap scheme
is more successful than the two Lagrangian methods.
The two Eulerian methods both compute overshoots
at the contact, the higher-order Godunov method
the least, while the two Lagrangian methods show
large oscillations there. On the 1440 zone grid, the
higher-order Godunov results best match the ex-
act solution, although they do underestimate the
speed of the shock slightly and show a small under-
shoot at the contact discontinuity. The Lagrange
plus remap scheme and the staggered grid Lagrange
scheme both overestimate the speed of the shock.
The Lagrange plus remap scheme computes a large
but relatively narrow overshoot in the density at
contact discontinuity. The staggered grid Lagrange
scheme spreads this overshoot over a wider region.
The higher-order Godunov Lagrange scheme shows
the worst results. It overestimates the speed of the
shock and spreads the overshoot at the contact over
the entire region between the contact and the shock.

Discussion and conclusions

The results in the previous section demonstrate
that a staggered grid, Lagrange plus remap, arti-
ficial viscosity scheme can compute results for Eu-
lerian gas dynamics that are comparable to those
of a cell centered, direct Eulerian, higher order Go-
dunov method. Moreover, they show that certain
features of the current Lagrange plus remap scheme
contribute to its improved performance relative to
the method examined by Woodward and Colella.!
Three critical features in particular are the use of the
monotonic artificial viscosity in the Lagrange step
and the use of a van Leer (or comparable) limiter in
conjunction with the separate advection of internal
and kinetic energies in the remap step.

The results for several of the test problems war-
rant additional discussion. The interacting blast
wave results demonstrate that in some cases the
Lagrange plus remap approach can resolve contact
discontinuities much better than the higher-order
Godunov approach. The double Mach reflection
results demonstrate that the monotonic artificial vis-
cosity contributes to the improved performance of
the Lagrange plus remap scheme. They also suggest

10

LeBlanc shock tube: e att = 6.0

180 zones

—— Lagrange plus remap
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Fig. 9 Internal energy at ¢ = 6 for the LeBlanc
shock tube on grids of 180 and 1440 zones.
Closeup of the region surrounding the contact
discontinuity and the shock.

that the unsplit nature of the corner transport up-
wind scheme contributes as well; however, this claim
warrants further examination. The shock refraction
results are inconclusive but do serve to show that
the Lagrange plus remap scheme can compute the
development of a Kelvin-Helmholtz instability along
a shear interface. The LeBlanc problem is the one
problem for which the Lagrange plus remap scheme
did not fare as well as the higher-order Godunov
method. The problems experienced by the Lagrange
plus remap scheme, in particular the density over-
shoots at the contact discontinuity, do seem to origi-
nate in the Lagrange step. Moreover, these problems
are independent of whether an artificial viscosity or a
Godunov approach is used for shock capturing. Con-
versely, it is the direct Eulerian approach, and not
the higher-order Godunov methodology itself, that
enables the direct Eulerian Godunov scheme here to
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compute accurate results for the LeBlanc problem.

The work in this paper was done in conjunc-
tion with the development of a structured grid local
adaptive mesh refinement scheme®! suitable for use
with a staggered grid ALE methodology. Part of this
work will entail implementation of the Lagrange plus
remap algorithm in two-dimensional cylindrical co-
ordinates as well as in three-dimensions. In future
work, as that development proceeds, we will further
our comparison of higher-order Godunov and stag-
gered grid Lagrange plus remap schemes.
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